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Effective charges for 88Sr and 90Zr closed-shell cores
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Abstract. Effective charges are calculated for protons and neutrons in the region of mass 90. It is found
that their magnitudes differ appreciably depending on whether the proton p1/2 shell is empty or full. The
calculated values are compared with values deduced from nuclei with simple configurations, and from a
fit to N=50 data. The empirical values are used in shell-model calculations of quadrupole moments of
N=50-58 nuclei.

PACS. 21.10.Ky Electromagnetic moments – 21.60.Cs Shell model – 27.60.+j 90 ≤ A ≤ 149

1 Introduction

The effective charges, eeff (also to be written eπ and eν
when distinguishing proton and neutron cases), of valence
nucleons close to the Fermi surface reflect the polarizing
effect the nuclear core has on the properties of valence nu-
cleons. In particular, the E2 giant quadrupole resonance,
understood as a coherent superposition of particle-hole
states, is a dominating influence. In this work we will use
the linked valence cluster theory described by Brandow [1]
to evaluate the effective charge, eeff , for closed-shell-plus
(or minus)-one configurations relative to closed shells at
88Sr and 90Zr. The calculations are carried out to second
order in the perturbing interaction.

The most reliable data on eeff are obtained from mea-
surements of static quadrupole moments, Q, of high-spin
isomers in nuclei near closed shells, since they have rela-
tively pure shell-model character. For this reason, we will
concentrate on Q moments although we will also consider
some transition B(E2) values. The first comprehensive
study of the g9/2 orbital in the A ' 90 mass region was
given by Raghavan et al. [2]. Our work builds on this
start.

In Sect. 2 we give a fully microscopic calculation of
eeff for a number of different orbitals in the A ' 90 mass
region. We will comment, in particular, on the state de-
pendence of the results. In Sect. 3 we compare these results
with experimental data in nuclear states whose configura-
tions are likely to be quite pure. More detailed shell-model
calculations are given in Sect. 4, which will gauge the suc-
cess and usefulness of the deduced eeff values.

2 Calculation of effective charges

Consider, by way of an example, the quadrupole moment
of the ground state, 5/2+, of 89Sr. Naively, this nucleus can

be described as a closed shell, 88Sr, plus an additional neu-
tron in the d5/2 orbital. Its quadrupole moment is given
in terms of a single-particle matrix element multiplied by
an effective charge. Of course, describing a nucleus in this
way is an extreme case of truncation in the shell-model
space. To the extent that the effective residual interaction
among nucleons near the Fermi surface is weak, a pertur-
bation expansion can be developed formally [1] to derive
an effective operator that can be used in truncated model
spaces: Q̂eff = eeffQ̂. This, in essence, is the definition
of the effective charge and the procedure is completely
successful if the single-particle matrix element of Q̂eff re-
produces the experimental result.

There have been a number of calculations where Q̂eff

has been evaluated to second order [3–7] and to higher
orders [6–9], but only in light nuclei. We are not aware of
any systematic calculations in medium-mass nuclei. Our
methodology closely follows that of Ellis and Siegel [4],
where the formal expansion can be represented in terms
of a number of Goldstone diagrams. The rules for inter-
preting these diagrams have been given, for example, in
[10]. Briefly an upgoing line represents an orbital unoccu-
pied in the chosen closed-shell core (particle state), while a
downgoing line represents an occupied orbital (hole state).
We evaluate the diagrams using the harmonic oscillator
potential as the one-body Hamiltonian that provides the
basis for the calculation; all matrix elements are evalu-
ated in an oscillator basis. It would be preferable to use a
Hartree-Fock procedure to provide the mean average field.
Ellis and Mavromatis [11] have given all the Hartree-
Fock insertion graphs that would enable a calculation in
an oscillator basis to be corrected to second order to a
Hartree-Fock basis. In this work, however, we have not
calculated these Hartree-Fock insertion graphs, arguing
that for our purposes an oscillator basis is sufficiently
close to a Hartree-Fock basis. It remains to specify the
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Table 1. Calculated effective charges in closed-shell-plus (or minus)-one configurations, broken down by class of diagram

Empty πp1/2 orbit Full πp1/2 orbit

ν(g−1
9/2

) ν(d5/2) π(g9/2) ν(g−1
9/2

) ν(d5/2) π(g9/2)

Zeroth order: 0.00 0.00 1.00 0.00 0.00 1.00
First order: 1.01 0.72 0.37 0.67 0.49 0.26
Second order: RPA 0.85 0.63 1.21 0.50 0.35 0.79
Second order: RPA corr. 0.07 0.04 −0.30 0.06 0.02 −0.15
Second order: NCS 0.02 0.02 −0.17 0.01 0.01 −0.17
Second order: Other 0.00 0.00 −0.00 0.00 0.00 0.00

Sum 1.95 1.40 2.12 1.23 0.88 1.72

Fig. 1. Zeroth-order and first-order core-polarisation graphs.
Diagram c is the Hermitian adjoint of diagram b

effective residual interaction. We will use a G-matrix con-
structed from the Paris potential and parameterised as a
sum of Yukawa potentials of various ranges and strengths
by Hosaka et al. [12].

All the graphs required for the construction of the ef-
fective operator, Q̂eff , are given in Figs. 1–5. In Fig. 1,
diagram (a) is the zeroth-order term; it represents the
bare operator, Q̂, evaluated between single-particle oscil-
lator states. The effective charge is given by the sum of
all other diagrams divided by this zeroth-order term eval-
uated for a proton. Diagrams (b) and (c) are the only
first-order terms; they are known as the core-polarisation
graphs and select out just the 2+ particle-hole components
in the residual interaction. We note that the neutron effec-
tive charge is twice as big as that for a proton from these
graphs. This is evident in Table 1, where we give some re-
sults for a neutron in orbitals g9/2 and d5/2, and a proton
in g9/2. We consider two cases where the closed shell is
considered to be 88Sr or 90Zr. The difference is whether
the proton p1/2 orbital is empty or full. We return to this
point later.

In Fig. 2 are the most important of the second-order
graphs. They represent a continuation of 2+ particle-hole
interactions that lead to a start of a geometric series,
which if summed to all orders, would be equivalent to a
Random Phase Approximation (RPA) calculation. These
graphs are in phase with the first-order graphs and give
a sizeable contribution to the effective charge, especially
for a proton. Note that the sum of first-order and second-
order RPA graphs gives an effective charge for a proton

almost comparable to that for a neutron. However, the
valence particle in these diagrams is not antisymmetrised
with respect to the particle line in the second bubble. This
is corrected by the series of diagrams shown in Fig. 3,
which are known as the RPA vertex-correction graphs.
Their contribution to the effective charge is small for neu-
trons, but of reasonable size for protons, cancelling some
of the RPA enhancement.

In Fig. 4 are a number of diagrams in which the one-
body operator acts on a particle or hole line as opposed to
operating on a particle-hole pair. This set of diagrams is
called a ‘number-conserving’ set (NCS). That is, if the E2
operator is replaced by the number operator, the sum of
these graphs would be identically zero. Thus one expects
a reasonable degree of cancellation among these graphs.
This appears to be so, as the contribution to the neutron
effective charge is very small. There remains a reasonable
size contribution for protons, but this comes mainly from
the folded graphs, which are correcting the normalisa-
tion associated with the zeroth-order contribution. These
folded graphs give zero contribution to the effective charge
of a neutron.

Finally, in Fig. 5 are a number of graphs, which can
all be interpreted as a one-body matrix element multiplied
by a second-order correction to the single-particle energy
of the valence state. These graphs all give a negligible
contribution to the effective charge.

This raises the question of the appropriate energy de-
nominators to be used for the intermediate states in the
perturbation expansion. Formally, these energies are given
in terms of the eigenenergies of the single-particle states
of the one-body Hamiltonian, the harmonic oscillator, and
so are integral multiples of h̄ω. We have only kept inter-
mediate states of energy up to 2h̄ω. This is because in
first-order graphs, states of ≥ 4h̄ω energy give zero con-
tribution, a result that follows from the properties of the
operator, Q̂, and harmonic oscillator functions. However,
as the closed-shell cores we are using for these calculations,
88Sr and 90Zr, are jj-closed shells rather than LS-closed
shells, we cannot use simple integral multiples of h̄ω for
the single-particle energies. This is because some of the
unoccupied particle orbitals are degenerate with some of
the occupied hole orbitals and that could result in cer-
tain energy denominators in the perturbation expansion
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Fig. 2. Second-order graphs
contributing to the RPA series.
Hermitian adjoint graphs are
not shown

Fig. 3. Second-order graphs representing
vertex corrections to the RPA series. Her-
mitian adjoint graphs are not shown

Fig. 4. Second-order graphs rep-
resenting the number-conserving
sets. Lines with a ‘loop’ on them
are folded lines [1] and represent
normalisation-correction graphs.
Hermitian adjoint graphs are not
shown

becoming zero. Of course, it is the spin-orbit force that
splits this degeneracy and in medium-mass nuclei the con-
tribution of the spin-orbit force to level spacing is very
important. Therefore, following Bohr and Mottelson [13],
we add to the one-body oscillator the terms

vlsh̄ω(l.s) + vllh̄ω
(
l2 − 〈l2〉N

)
, (1)

〈l2〉N =
1
2
N(N + 3), (2)

where N = 2n+ l is the principal quantum number for the
oscillator orbital, n the number of radial nodes (excluding
the origin and infinity) and l the orbital angular momen-
tum quantum number. There is no radial dependence to
these terms, so the eigenfunctions remain oscillator func-
tions, but the degeneracy among the single-particle en-
ergies is removed. We use the values vls = −0.127 and
vll = −0.03 from [13]. We make a further fine adjustment
to these energies for the single-particle states close to the
Fermi surface so that they match exactly experimental
values determined in pickup and stripping reactions. The

Table 2. Single-particle energies for neutrons and protons near
the Fermi surface from pick-up and stripping reaction data. All
other single-particle energies are given by Nh̄ω plus a spin-
orbit shift from (1) and normalised to the 1d5/2 value for neu-
trons and to the 1p1/2 value for protons

Neutron Proton

1p3/2 −15.14 −10.61
0f5/2 −14.98 −11.03
1p1/2 −11.50 −7.12
0g9/2 −11.11 −6.25
1d5/2 −6.36 −2.38
2s1/2 −5.33 −0.47
1d3/2 −4.35 −0.39
0g7/2 −3.69 −0.69

values of the single-particle energies used are given in Ta-
ble 2.
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Fig. 5. Second-order graphs that effectively modify
the single-particle energy of the valence orbital. Her-
mitian adjoint graphs are not shown

Table 3. Calculated effective charges in closed-shell-plus (or
minus)-one configurations

Orbit Empty πp1/2 orbit Full πp1/2 orbit

Diagonal

νg−1
9/2

1.95 1.23

νg7/2 1.92 1.26
νd5/2 1.40 0.88
νd3/2 1.35 0.87
πg9/2 2.12 1.72

Off-diagonal
νg7/2 − νd5/2 1.31 0.93
νg7/2 − νd3/2 1.20 0.91
νd5/2 − νd3/2 1.40 0.93
νd5/2 − νs1/2 1.08 0.79
νd3/2 − νs1/2 1.03 0.77

Returning to Table 1, we see the summed result for
the effective charge depends quite critically on whether
the closed-shell core is taken to be 88Sr (the proton p1/2

orbit empty) or 90Zr (the proton p1/2 orbit full). The
reason is that in the first case there are first-order con-
tributions to the effective charge arising from ∆N = 0
particle-hole excitations, π(p1/2, p

−1
3/2) and π(p1/2, f

−1
5/2).

In the second case these contributions are absent. Thus
in shell-model calculations it is important to use different
effective charges for the two cases. This was first stressed
by Raghavan et al. [2].

In Table 3 we give the summed result for the effec-
tive charge from second-order calculations for a number
of orbitals relative to the two closed shells, 88Sr and 90Zr.
Both diagonal and off-diagonal matrix elements are listed.
Notice there is some state-dependence evident in the re-
sults. Orbitals with a smaller orbital angular momentum,
l, have a smaller calculated effective charge.

3 Comparison with data for simple
configurations

To get a quick estimate of how successful these effective-
charge calculations are, we consider experimental data for
nuclei that can be considered predominantly closed-shell-
plus-one configuration, or closed-shell-plus-n, where n is
a small number. We will not consider any variation of the
effective charge with n. The best cases are the quadrupole
moments of the ground states of 87Sr and 89Sr, which lead
almost directly to the effective charge of a νg−1

9/2 hole or-
bital and a νd5/2 particle orbital relative to a 88Sr core.

The result is shown in Table 4. For neutrons relative to
a 90Zr core, there is no good experimental datum to pro-
vide a value for eν(g−1

9/2), while the quadrupole moment
of the ground state of 91Zr should provide eν(d5/2). How-
ever, in the latter case shell-model calculations, to be dis-
cussed in Sect. 4, suggest this is not a good single-particle
state but has a mix of configurations with the proton p1/2

orbit empty and configurations with the proton p1/2 or-
bit fully occupied. An effective charge derived from 91Zr
would therefore be interaction-dependent. A better ap-
proach is to use the quadrupole moment of the 2− state
in 90Y, which should have a rather pure p1/2d5/2 config-
uration. This gives eν(d5/2) = 1.36 when the proton p1/2

shell is half filled, and when combined with the value of
eν(d5/2) = 2.05 for a 88Sr core suggests that the value of
eν(d5/2) for a 90Zr core should be about 0.67.

For the proton effective charges, we have carried out a
least-squares fit to 15 quadrupole moments and B(E2)
values of N=50 nuclei, using the model space and in-
teraction of Gloeckner and Serduke (GS) [14]. Data
were weighted with experimental uncertainties, with the
minimum uncertainty set equal to 10% of the average
quadrupole reduced matrix element. The rms error of this
fit, the results of which are given in Table 4, was signifi-
cantly lower (χ = 0.91 rather than χ = 1.55) than for a
fit (giving eπ(g9/2) = 1.77), which assumed equal effective
charges for 88Sr and 90Zr cores.

In general, the comparison between theory and ex-
periment seems to be very good for the g9/2 orbital for
both protons and neutrons, for both cores considered. The
same, however, cannot be said for neutrons in the d5/2 or-
bital. For a 88Sr core, the theory is underpredicting, while
for a 90Zr core, the theory overpredicts. Indeed, the mas-
sive change indicated by experiment in eν(d5/2) between
88Sr and 90Zr cores is going to be very difficult to un-
derstand. This difference is dominated by the calculation
of the first-order core-polarisation graphs as discussed in
Sect. 2, and the contribution from these graphs would have
to be doubled to fit this result. That would imply a dou-
bling of the strength of the Paris G-matrix interaction in
this 2+ particle-hole channel. Such a doubling, however,
would seriously damage the agreement already achieved
between theory and experiment for the g orbits. There-
fore this result poses a puzzle.

4 Shell-model calculations

Quadrupole moments are calculated here for N=50-58
nuclei using the proton effective charges derived from
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Table 4. Comparison of computed effective charges with experimental values deduced from closed-shell-plus-one nuclei, or other
states with simple configurations

Orbit Empty πp1/2 orbit Full πp1/2 orbit

ν(g−1
9/2

) 87Sr: Q = +0.355(20) e · b

Expt: eν = 1.87± 0.01
Theory: eν = 1.95 Theory: eν = 1.23

ν(d5/2) 89Sr: Q = −0.291(15) e · b 90Y: Q(2−) = −0.155(3) e · b
Expt: eν = 2.05± 0.11 Expt: eν = 0.67± 0.15

Theory: eν = 1.40 Theory: eν = 0.88

π(g9/2) Fit to 15 data in N=50 nuclei Fit to 15 data in N=50 nuclei
Fit: eπ = 2.11± 0.09 Fit: eπ = 1.60± 0.06

Theory: eπ = 2.12 Theory: eπ = 1.72

Table 5. Quadrupole moments (in units of e · b) calculated in the shell model in three different model spaces and compared
with experiment [18]

Model Space

Nucleus Experiment (1) (2) (3) (3′)

90Zr(8+) −0.51(3) −0.51
91Zr(5/2+) −0.206(10) −0.20 −0.20 −0.22 −0.20
91Zr(21/2+) (−)0.86(5) −0.81 −0.81 −0.81 −0.72
93Nb(9/2+) −0.32(2), −0.366(18) −0.35 −0.38 −0.39 −0.38
92Mo(8+) ±0.34 −0.34
94Mo(2+) −0.13(8) or +0.01(8) 0.21 0.19 −0.05 −0.02
94Mo(8+) ±0.47(1) −0.43 −0.46 −0.45 −0.47
95Mo(5/2+) −0.022(1) 0.03 0.01 −0.05 −0.04
96Mo(2+) −0.20(8) or +0.04(8) −0.06 0.00 −0.14 −0.11
97Mo(5/2+) +0.17(4) 0.26 0.21 0.29 0.27
98Mo(2+) −0.26(9) or +0.10(9) 0.17 0.19 0.26 0.26
100Mo(2+) −0.39(8) or −0.13(8) 0.14 −0.18 −0.13
99Tc(9/2+) −0.129(6) −0.11 −0.12 −0.13 −0.17
96Ru(2+) −0.13(9) 0.16 0.10 −0.14 −0.13
98Ru(2+) −0.20(9) or −0.01(9) −0.11 0.03 −0.18 −0.17
99Ru(5/2+) +0.079(4) 0.30 0.10 0.26 0.27
99Ru(3/2+) +0.231(12) 0.02 −0.15 −0.16 −0.17
100Ru(2+) −0.43(7) or −0.20(7), −0.13(7) 0.04 −0.07 −0.06 −0.05
101Ru(5/2+) +0.457(23) 0.41 0.49 0.47
102Ru(2+) −0.57(7) or −0.35(7) 0.00 −0.26 −0.24
102Pd(2+) −0.20(15) −0.09 −0.20 −0.26 −0.27
104Pd(2+) −0.46(10) −0.13 −0.22 −0.22
103Cd(5/2+) −0.79(66) 0.23 −0.03 0.06 0.07
105Cd(5/2+) +0.43(4) 0.26 0.30 0.33
106Cd(2+) −0.28(8) or −0.12(8) −0.20 −0.10 −0.10
104In(5+) +0.66(11) 0.14 0.36 0.23 0.27
105In(9/2+) +0.83(5) 0.30 0.39 0.42 0.50

the N=50 least-squares fit (1.60 and 2.11 for filled and
empty p1/2 shell), and orbit-independent neutron effective
charges set equal to the empirical d5/2 values (0.67 and
2.05 for filled and empty proton p1/2 shell). In all calcula-
tions protons were allowed to span the p1/2 and g9/2 shells.
For N=50, the interaction was that of GS [14], which
was fitted to spectra of N=50 nuclei, while for N=51-58
three different neutron model spaces were used. In model
space (1) neutrons were restricted to the d5/2 shell, and
the neutron-proton interaction, taken from [15], was from

a fit to spectra of N=51 nuclei. The neutron-neutron in-
teraction was a set of d2

5/2 matrix elements chosen to opti-
mize the calculated binding energies for the Zirconium iso-
topes. In model space (2) the neutrons are restricted to the
d5/2 and s1/2 shells. The interaction was that of Gloeckner
[16], which was derived from a fit to levels of Zirconium
and Niobium isotopes. Finally, in model space (3) the neu-
trons are distributed among the d5/2, s1/2, d3/2 and g7/2

shells but with the restriction that no more than two neu-
trons be taken out of the d5/2 shell. The interaction was
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the JS6 interaction of Johnstone and Skouras [17], which
has proton-proton and proton-neutron components simi-
lar to those of model space (1). The neutron-neutron in-
teraction is a volume delta force, with the important d2

5/2

matrix elements chosen to reproduce the 92Zr spectrum.
The calculated quadrupole moments for a range of nuclei
with mass number A between 90 and 105, evaluated with
these interactions, are given in Table 5.

Quadrupole moments of 2+ states differ appreciably
in the three model spaces. Model space (3) gives the best
agreement with experiment, tending to give the negative
moments required empirically. The magnitudes of the cal-
culated moments are too small for several of the higher-
mass isotopes. We also give a second calculation, based on
model space (3), but using this time the calculated effec-
tive charges from Table 3 rather than the empirical ones.
This calculation, labelled (3′) in Table 5, does not differ
very much from that labelled (3).

5 Summary

Effective charges have been calculated for protons and
neutrons in the region of mass 90, and compared with
empirical values deduced from experimental data. Cal-
culated and empirical values are in close agreement for
protons, but there is less satisfactory agreement for neu-
trons. Theory predicts that the effective charges depend
strongly on whether the proton p1/2 shell is full or empty,
and a least-squares fit to quadrupole data of N=50 nuclei
appears to confirm this. Quadrupole moments have been
calculated for a wide range of nuclei using three different
model spaces for neutrons.
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